
NAG C Library Function Document

nag_zhpevd (f08gqc)

1 Purpose

nag_zhpevd (f08gqc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix held in packed storage. If the eigenvectors are requested, then it uses a divide-and-
conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required,
then it uses the Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_zhpevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, Complex ap[], double w[], Complex z[], Integer pdz, NagError *fail)

3 Description

nag_zhpevd (f08gqc) computes all the eigenvalues and, optionally, all the eigenvectors of a complex
Hermitian matrix A (held in packed storage). In other words, it can compute the spectral factorization of A
as

A ¼ Z�ZH,

where � is a real diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the (complex)
unitary matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi, i ¼ 1; 2; . . . ; n.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag_RowMajor or Nag_ColMajor.

2: job – Nag_JobType Input

On entry: indicates whether eigenvectors are computed.

job ¼ Nag_DoNothing

Only eigenvalues are computed.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08gqc

[NP3660/8] f08gqc.1

job ¼ Nag_EigVecs

Eigenvalues and eigenvectors are computed.

Constraint: job ¼ Nag_DoNothing or Nag_EigVecs.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored.

uplo ¼ Nag_Upper

The upper triangular part of A is stored.

uplo ¼ Nag_Lower

The lower triangular part of A is stored.

Constraint: uplo ¼ Nag_Upper or Nag_Lower.

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

5: ap½dim� – Complex Input/Output

Note: the dimension, dim, of the array ap must be at least max 1; n� nþ 1ð Þ=2ð Þ.
On entry: the Hermitian matrix A, packed by rows or columns. The storage of elements aij depends
on the order and uplo arguments as follows:

if order ¼ Nag_ColMajor and uplo ¼ Nag_Upper,
aij is stored in ap½ j� 1ð Þ � j=2þ i� 1�, for i � j;

if order ¼ Nag_ColMajor and uplo ¼ Nag_Lower,
aij is stored in ap½ 2n� jð Þ � j� 1ð Þ=2þ i� 1�, for i � j;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Upper,
aij is stored in ap½ 2n� ið Þ � i� 1ð Þ=2þ j� 1�, for i � j;

if order ¼ Nag_RowMajor and uplo ¼ Nag_Lower,
aij is stored in ap½ i� 1ð Þ � i=2þ j� 1�, for i � j.

On exit: A is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

6: w½dim� – double Output

Note: the dimension, dim, of the array w must be at least max 1; nð Þ.
On exit: the eigenvalues of the matrix A in ascending order.

7: z½dim� – Complex Output

Note: the dimension, dim, of the array z must be at least

max 1; pdz� nð Þ when job ¼ Nag_EigVecs;
1 when job ¼ Nag_DoNothing.

If order ¼ Nag_ColMajor, the i; jð Þth element of the matrix Z is stored in z½ j� 1ð Þ � pdzþ i� 1�.
If order ¼ Nag_RowMajor, the i; jð Þth element of the matrix Z is stored in z½ i� 1ð Þ � pdzþ j� 1�.
On exit: if job ¼ Nag_EigVecs, z is overwritten by the unitary matrix Z which contains the
eigenvectors of A.

If job ¼ Nag_DoNothing, z is not referenced.

f08gqc NAG C Library Manual

f08gqc.2 [NP3660/8]

8: pdz – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:

if job ¼ Nag_EigVecs, pdz � max 1;nð Þ;
if job ¼ Nag_DoNothing, pdz � 1.

9: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_CONVERGENCE

The algorithm failed to converge, valueh i elements of an intermediate tridiagonal form did not
converge to zero.

NE_ENUM_INT_2

On entry, job ¼ valueh i, n ¼ valueh i, pdz ¼ valueh i.
Constraint: if job ¼ Nag_DoNothing, pdz � 1.

On entry, job ¼ valueh i, n ¼ valueh i, pdz ¼ valueh i.
Constraint: if job ¼ Nag_EigVecs, pdz � max 1;nð Þ.
On entry, pdz ¼ valueh i, job ¼ valueh i, n ¼ valueh i.
Constraint: if job ¼ Nag_EigVecs, pdz � max 1;nð Þ;
if job ¼ Nag_DoNothing, pdz � 1.

NE_INT

On entry, n ¼ valueh i.
Constraint: n � 0.

On entry, pdz ¼ valueh i.
Constraint: pdz > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ Eð Þ, where
Ek k2 ¼ O �ð Þ Ak k2,

and � is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8 Further Comments

The real analogue of this function is nag_dspevd (f08gcc).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08gqc

[NP3660/8] f08gqc.3

9 Example

To compute all the eigenvalues and eigenvectors of the Hermitian matrix A, where

A ¼

1:0þ 0:0i 2:0� 1:0i 3:0� 1:0i 4:0� 1:0i
2:0þ 1:0i 2:0þ 0:0i 3:0� 2:0i 4:0� 2:0i
3:0þ 1:0i 3:0þ 2:0i 3:0þ 0:0i 4:0� 3:0i
4:0þ 1:0i 4:0þ 2:0i 4:0þ 3:0i 4:0þ 0:0i

0
BB@

1
CCA.

9.1 Program Text

/* nag_zhpevd (f08gqc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, ap_len, pdz, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2], job_char[2];
Complex *ap=0, *z=0;
double *w=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("nag_zhpevd (f08gqc) Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
ap_len = n*(n+1)/2;
w_len = n;
pdz = n;

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, Complex)) ||

!(z = NAG_ALLOC(n * n, Complex)) ||
!(w = NAG_ALLOC(w_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read whether Upper or Lower part of A is stored */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

f08gqc NAG C Library Manual

f08gqc.4 [NP3660/8]

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re,

&A_UPPER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

{
Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re,

&A_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
/* Read type of job to be performed */
Vscanf(" ’ %1s ’%*[^\n] ", job_char);
if (*(unsigned char *)job_char == ’V’)

job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A */
/* nag_zhpevd (f08gqc).
* All eigenvalues and optionally all eigenvectors of
* complex Hermitian matrix, packed storage
* (divide-and-conquer)
*/

nag_zhpevd(order, job, uplo, n, ap, w, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_zhpevd (f08gqc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors */
Vprintf("Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" %5ld %8.4f\n",i+1,w[i]);
Vprintf("\n");
/* nag_gen_complx_mat_print_comp (x04dbc).
* Print complex general matrix (comprehensive)
*/

nag_gen_complx_mat_print_comp(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, Nag_AboveForm, "%7.4f", "Eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,
0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_gen_complx_mat_print_comp (x04dbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08gqc

[NP3660/8] f08gqc.5

}
END:
if (ap) NAG_FREE(ap);
if (w) NAG_FREE(w);
if (z) NAG_FREE(z);
return exit_status;

}

9.2 Program Data

nag_zhpevd (f08gqc) Example Program Data
4 :Value of N
’U’ :Value of UPLO
(1.0, 0.0) (2.0,-1.0) (3.0,-1.0) (4.0,-1.0)

(2.0, 0.0) (3.0,-2.0) (4.0,-2.0)
(3.0, 0.0) (4.0,-3.0)

(4.0, 0.0) :End of matrix A
’V’ :Value of JOB

9.3 Program Results

nag_zhpevd (f08gqc) Example Program Results

Eigenvalues
1 -4.2443
2 -0.6886
3 1.1412
4 13.7916

Eigenvectors

1 2 3 4
1 0.4836 0.6470 -0.4456 -0.3859

-0.0000 -0.0000 -0.0000 0.0000

2 0.2912 -0.4984 -0.0230 -0.4441
-0.3618 -0.1130 -0.5702 0.0156

3 -0.3163 0.2949 0.5331 -0.5173
-0.3696 0.3165 0.1317 -0.0844

4 -0.4447 -0.2241 -0.3510 -0.5277
0.3406 -0.2878 0.2261 -0.3168

f08gqc NAG C Library Manual

f08gqc.6 (last) [NP3660/8]

	f08gqc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	job
	uplo
	n
	ap
	w
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_CONVERGENCE
	NE_ENUM_INT_2
	NE_INT
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

